StatPhys26, Lyon, July 2016

arXiv: 1604.03305

Dynamical Crossover of Clone Size Statistics in a Stochastic Model of Stem Cell Differentiation

Hiroki Yamaguchi, Kyogo Kawaguchi^A, and Takahiro Sagawa Dept. Appl. Phys., Univ. Tokyo, Dept. Sys. Biol., Harvard Medical School^A

Critical Statistics of Clonal Population

Stem Cells (SCs) support tissue homeostasis

Previous Models of Cell Fate Decision

Critical Birth-Death Process (CBD)

prob. 1/2

Voter Model (VM)

- Proliferating Cell (PC) Differentiated Cell
- $\alpha = 1 \qquad \Phi(X) = e^{-X}$

exp.: epithelial (sheet) tissues

basal layer

in vivo Lineage Tracing

Tracking the labeled population of progenies of single SCs to unravel how cells choose their fate and maintain tissue

Clone Size Statistics

Universal scaling form of cumulative distribution

 $C_n(t) \simeq \Phi(n/n_{\text{surv}}(t))$

collapse onto a single scaling function $\Phi(X)$

Average clone size grows!! $n_{surv}(t) \sim t^{\alpha}$

A.M.Klein and B. D. Simons, Development 138, (2011).

Problems & Research Questions

with **finely-tuned** probabilities

✓ Fine-tuning is required in the previous models.

 \rightarrow A theoretical model without fine-tunings is desirable.

 \checkmark CBD and VM are not discussed in the equal foot point.

 \rightarrow Can we treat the two models in a unified framework?

Self-replicating Langevin System: Many-Body Langevin + Birth-Death Process **Self-replication Process** : Local Density Dependent Spatial cell-cell Interaction : Cell Adhesion $\frac{d}{dt}\vec{r}_{j}(t) = -\vec{\nabla}_{j}U(\{\vec{r}_{i}(t)\}) + \sqrt{2T}\vec{\xi}_{j}(t) \qquad j = 1, 2, ..., N(t)$ Differentiation Proliferation $w^-(ho_L)$ $\langle \mathcal{E}^{\mu}_{\cdot}(t) \rangle = 0$

interaction range 2L

Negative feedback via local density $\rho_L(\vec{r})$

 $w^{\pm}(\rho)$ are balanced at an attractive fixed point $\rho = \rho^*$

$$U(\{\vec{r}_i\}) = \sum_{j=1}^{N} \sum_{k>j} u(\vec{r}_j - \vec{r}_k) \frac{\langle \zeta_j(t) \rangle = 0}{\langle \xi_j^{\mu}(t) \xi_k^{\nu}(t') \rangle} = \delta_{j,k} \delta^{\mu,\nu} \delta(t - t')$$

$$= 1$$

$$u(\vec{x} - \vec{y}) = \frac{1}{2} K(|\vec{x} - \vec{y}| - l_0)^2$$
for \vec{x}, \vec{y} : neighboring pairs
$$l_0$$
: typical length scale of a single cell

Scaling Hypothesis Slope: 1/2 Scaling form 10^{1} $(l(t) - l_0)/L$ $t \ll t_c(L),$ $t \gg t_c(L).$ Slope: 🕻 $\frac{l(t) - 1}{L} = f\left(\frac{t}{t_c(L)}\right) \begin{cases} \simeq \frac{t}{t_c(L)} \\ \sim \left(\frac{t}{t_c(L)}\right)^{1/2} \end{cases}$ 10^{0} L = 10 L = 20 L = 30 L = 40Crossover Time $t_c(L) = 2\lambda^{-1}(L-1)$ $t / t_{c}(L)$ A simple scenario: competition between l(t) and L $L = l(t) \simeq (1 + \lambda t_c/2)$ l(t) Average clone size

Remark: Clustering of Cells

Large interaction range

Unphysical clustering of cells

Linear Stability Analysis $\rho(k;t) \sim e^{\nu(k)t}$ Uniform distribution is unstable if $\frac{\beta}{\alpha L^2} \lesssim 0.012$ time scale of cell division $\overline{\alpha L^2}$ $\overline{\lambda L^2} = \overline{\text{time scale of spatial interaction}}$

Summary of Current Study

In this study, we propose a model of cell fate decision with cell-cell interaction

✓ Fine-tuning is avoided ✓ CBD and VM are unified by the interaction range : A unified framework to study interacting cell population ✓ Dynamical crossover of clone size statistics for 1 dim