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Ordering in 2D

Ordering processes in a system of inter-
acting particles in 2D behave in di�er-
ent ways depending on the uniformity
of its constituents: Monodisperse en-
sembles crystallize very well, not only
by slow annealing but also after temper-
ature quenches. Polydisperse ensem-
bles, instead, are good glass-formers, not
only through quenching protocols but also
with annealing, so avoiding crystalliza-
tion.

Cluster-forming ability

Systems of particles interacting via po-
tentials with a negative minimum in the
e�ective Fourier transform, develop clus-
ter structures. While these structures
are known to form crystals and quasi-
crystals in 2D, its dynamics is still un-

known, both in the equilibrium and non-
equilibrium regimes.

The model

We consider a system of monodisperse

particles interacting via a generic ultra-
soft repulsive interaction of the form

U(r) = U0 [1 + (r/rc)6]
−1
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Figure 1: Pair-wise interaction poten-
tials with cluster-forming ability. Red line:
generic interaction of Eq. (1). Blue line: spe-
ci�c interaction [Eq. (2)] of relevance to 1.5
superconductors.

We study the physical properties of
this ensemble following annealing and
temperature quenches, by means of
molecular dynamics simulations with a
Langevin thermostat.

Findings

1. The cluster-crystal at equilibrium
presents a two-step relaxation,
similar to that in glass forming liq-
uids. It arises from the hopping of
individual particles over the ordered
array of clusters. This picture is a
classical analog of the quantum su-
persolid phase. A solid with di�u-

sion.

2. The non-equilibrium regime devel-
ops a (cluster) crystal-to-glass

transition. The disordered phase
establishes below certain tempera-
ture, via a self-generated polydis-
persity of the clusters, for which
particles hopping is arrested. A

glassy phase in a 2D monodisperse

isotropic system without quenched

disorder.

3. The phenomenology described here
can be addressed in many real ex-
periments, from colloidal suspen-
sions to 1.5-superconductor layers.
It may be also of interest for phase

change materials.
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Equilibrium dynamics: The hopping crystal

We compute the mean square displacementMSD(t) = ⟨∆r2(t)⟩ = ⟨∑j ∣rj(0)−rj(t)∣2/N⟩
as well as the self-intermediate scatter function Fs(k∗, t) = ⟨∑j eik

∗[rj(0)−rj(t)]/N⟩.
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Figure 2: Left: snapshot of the system at equilibrium, signaling the clusters array. Right:
Fs and MSD for the equilibrium crystal (left), a two step decorrelation can be observed.
Temperature increase from up to down in the upper panel.

Non-equilibrium dynamics: crystal-to-glass transition

The hexatic order is estimated via the bond-order parameter of the clusters, Ψ6 =
⟨∣∑Nc

j ∑
Nj

l ei6θjl/(NcNj)∣⟩.
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Figure 3: a) Hexatic order versus temperature, after quenches from high temperature (blue
line), and by slow cooling (red dashed line). c) and d) are typical structure factors at the tem-
peratures signaled in (a). b) Dynamic phase diagram including the crystal-to-glass transition.
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Figure 4: Left: a) MSD, temperature decrease from up to down; c) non-gaussian parameter
α2 = [⟨∆r4(t)⟩/2⟨∆r2(t)⟩2] − 1, evidence of dynamic heterogeneity; b) distribution of coordi-
nation number for clusters with di�erent occupation (number of particles) in the glassy phase.
Right: snapshot of the glassy phase.

Application: 1.5-Superconductors

Vortices in layered 1.5-superconductors can interact via an e�ective potential of the
form

U(r) = ∑
i=1,2

C2
Bi
K0 (

r

λi
) −C2

iK0 (
r

ξi
) (2)

see the blue line in Fig (1). All above-discussed phenomenology is reproduced by this
model of experimental relevance.
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