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ABSTRACT
Here we study large deviation functions (LDF) of time-
integrated current for a number of variants of TASEP
by adapting the iterative Measurement-and-Feedback
method [1]. Firstly, we study LDF for TASEP on a ring,
both analytically and numerically to justify this method.
We compare our exact results using Bethe anstaz with sim-
ulations based on the iterative method, analyzing order
of corrections in this method and derive conditions of its
applicability. Then, we adapt the existing methods to the
setting of discrete time Markov chains to study LDF for
discrete time TASEP with open boundaries as a minimal
stochastic traffic model.

INTRODUCTION
A one-dimensional lattice system of L sites, each site being either occupied by one particle or empty. At each time step,
particles jump to the right with probability p, provided that site is empty.

1. Open boundaries condition: particles can enter and exit the system from boundaries.
2. Periodic (ring) boundaries condition: number of particles is fixed.

• Time integrated current, denoted by QT is defined as normalized total number of bulk jumps during time interval
[0, T ].

QT =
1

T

T−1∑
i=0

JCiCi+1
(1)

• QT obeys large deviation principle (LDP) in long time limit [2], i.e. limT→∞ P(QT = q) = e−TF(q).
• F(q) is called LDF of QT . Gartner-Ellis theorem [2] states that F(q) is Legendre transform of scaled cumulant

generating function of QT , i.e. F(q) = sups∈R{sq −G(s)}.

BETHE ANSTAZ FOR TASEP ON A RING FOR s < 0
Each configuration of the system is represented by a strictly increasing sequence of integers of length N with elements
from {1, 2 · · ·N} which determined the positions of N particles. i.e. C = {n1, n2, · · · , nN}. The eigenfunction of a
configuration C is written as

ψ(n1, n2 · · ·nN ) =
∑
σ∈SN

Aσz
n1

σ(1)z
n2

σ(2) · · · z
nN

σ(N) (2)

where SN is a set of all permutations of the integers 1, 2, · · · , N .
The Bethe equations are

zLk =

N∏
i=1

−e
s − zk
es − zi

for k = 1, · · · , N (3)

For any solution {zk}, (2) gives an eigenvector of matrix Ũ with eigenvalue Λ = es(
∑N
k=1

1
zk
) − N . From periodicity

condition
Aσ(1),σ(2),··· ,σ(N) = Aσ(2),σ(3),···σ(N),σ(1)z

L
σ(1) (4)

Our starting point is the results in [3] where the authors estimated {zk} for which Λ is maximized. It is the case where
N − 1 of zk ≈ es, and one is e(1−N)s (Here we assume z1 is this one).

• The non-zero terms in equation (2) are those in which the amplitudes can be written in terms of the amplitude of
the identity permutation, using the periodicity condition.

• There are N nonzero terms; all transpositions of 1 with other integers.

• By substitution we obtain

ψ(n1, n2 · · ·nN ) =

j=N∑
j=1

es[L(j−1)−
∑N

k=1 (nj−nk)] (5)

• The equation (5) is translational invariance.

• ψ {n1, · · ·nN} attains minimums at equidistant configurations, and maximum at configurations with one cluster.

MODELS

Figure 1: Open boundaries (left); Periodic boundaries (right)

ITERATIVE METHOD [1]
We adapt the iterative method [1] to discrete time TASEP.
Let, U = {u(C,C ′)} represent the transition matrix of the
system. Define the tilted transition matrix by

ũ(C,C ′) =

{
esJCC′u(C,C ′) C 6= C ′

1−
∑
C′ 6=C u(C,C

′) C = C ′ (6)

The main idea of the iterative method [1] is to create a
physical system corresponding to the biased process so
that a rare event in the original system is a typical event
in the new system.
Structure of transition matrix of the auxiliary system for
discrete TASEP is

uaux
C,C′ = Ase

sJCC′u(C,C ′)
ψ(C ′)

ψ(C)
(7)

whereAs is a normalization constant, and ψ(C) are entries
of the left eigenvector corresponding to µ(s). Steps of the
iterative method are as follows [1]:

• Measure
〈
eδsτQτ

〉
C

as a function of C in the original
system.

• Then, depending on the value of
〈
eδsτQτ

〉
C

, we mod-
ify the transition probability to

uδs(C,C ′) = Aδsu(C,C
′)eδsJCC′

〈
eδsτQτ

〉
C′

〈eδsτQτ 〉C
(8)

• Next, in the modified system, we measure the ex-
pected value of the same quantity eδsτQτ , denoted
by

〈
eδsτQτ

〉δs
C

.
• Again, we define the second modified transition

probability as

u2δs(C,C ′) = A2δsu
δs(C,C ′)eδsJCC′

〈
eδsτQτ

〉δs

C′

〈eδsτQτ 〉δsC
(9)

• We iterate this procedure for many times. Then, we
obtain a set of transition probabilities

ulδs(C,C ′) = Alδsu(C,C
′)elδsJCC′

∏l−1
i=0

〈
eδsτQτ

〉iδs

C′

〈eδsτQτ 〉iδsC

(10)

with l = 0, 1, 2, · · · .
• The iterative method is based on 〈QT 〉s ≈〈

QT e
sTQT

〉
〈
esTQT

〉
• From the formula, we obtain the expected value of

any quantity in the biased system. For example, for
the LDF of QT

F(q) = sup
s

[sq −
l=M−1∑
l=0

〈QT 〉lδs δs] +O(δ2s) (11)

with s =Mδs.

FUTURE RESEARCH
This method will be applied in future to the Nagel-
Schreckenberg model, which serves as a minimal discrete
model of freeway traffic.

RESULTS
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Figure 1 (left); Left eigenvector corresponding to the largest eigenvalue of Ũ from diagonalized Ũ , and simulation. (middle); Product of right and
left eigenvector corresponding to the largest eigenvalue of Ũ from diagonalized Ũ , for discrete time TASEP with open boundaries condition, L = 8,
α = 0.8, β = 0.8 and s = −2. (right); Scaled cumulant generating function for discrete time TASEP with open boundaries condition, L = 8, α = 0.8,
β = 0.8 from diagonalized Ũ , and simulation.
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Figure 1 Left eigenvector corresponding to the largest eigenvalue of tilted operator of continuous time TASEP on a ring with L = 8, and and s = −2

(left); Low density ρ = 0.25. (left); half-filling
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ERROR OF THE ESTIMATION
To evaluate this, we calculate the ratio between the largest
and second largest values of ψ(C). The latter attains in
configurations with two clusters, one is of size N − 1, and
the other one is a single particle cluster. c is the distance
between the clusters.

ψ{n,n+1,··· ,n+N−2,n+N−1+c}
ψ{n,n+1,··· ,n+N−1} = ecs +O(es(N−1)(L−N)) (12)


